9B-3 : | Vapor Power Cycle Based on Temperature Gradients in the Ocean | 9 pts |
---|
A Rankine Power Cycle uses water at the surface of a tropical ocean as the heat source, TH = 82oF, and cool water deep beneath the surface as the heat sink, TC = 48oF. Ammonia is the working fluid. | |||||||||||||||||
![]() |
|||||||||||||||||
The boiler produces saturated ammonia vapor at 80oF and the condenser effluent is saturated liquid ammonia at 50oF. The isentropic efficiencies of the pump and turbine are 75% and 85%, repectively. | |||||||||||||||||
Calculate the... a.) Thermal efficiency of this Rankine Cycle b.) Thermal efficiency of a Carnot Cycle operating between the same two thermal reservoirs |
|||||||||||||||||
Read : | Assume the process operates at steady-state and that changes in potential and kinetic energies are negligible. | ||||||||||||||||
We want the boiler pressure to be as high as possible and the condenser pressure to be as low as possible in order to maximize the thermal efficiency of the cycle. But the saturation temperature of the ammonia at the boiler pressure must be less than 82oF in order to absorb heat from the warmer seawater. This explains why the ammonia boils at 80oF. A similar argument regarding the vapor-liquid equilibrium in the condenser leads us to the choice of 50oF for the saturation temperature of the ammonia in the condenser. | |||||||||||||||||
Given: | T2 | 80 | oF | TC | 48 | oF | |||||||||||
x2 | 1 | lbm vap/lbm | TH | 82 | oF | ||||||||||||
T3 | 50 | oF | (Tsw, in)boil | 80 | oF | ||||||||||||
x4 | 0 | lbm vap/lbm | (Tsw, in)cond | 48 | oF | ||||||||||||
hS,pump | 75% | hS,turb | 85% | ||||||||||||||
Find: | a.) | hth | ??? | % | b.) | hmax | ??? | % | |||||||||
Diagram: | A good flow diagram was provided in the problem statement. | ||||||||||||||||
TS Diagram : | ![]() |
||||||||||||||||
Assumptions: | 1 - | Each process in the cycle operates at steady-state. | |||||||||||||||
2 - | The power cycle operates on the Rankine Cycle. | ||||||||||||||||
3 - | Changes in kinetic and potential energies are negligible. | ||||||||||||||||
4 - | The pump and the turbine are both adiabatic. | ||||||||||||||||
Equations / Data / Solve: | |||||||||||||||||
Let's organize the data that we need to collect into a table. This will make it easier to keep track of the values we have looked up and the values we have calculated. | |||||||||||||||||
Stream | State | T (oF) |
P (psia) |
X (lbm vap/lbm) |
H (Btu/lbm) |
S (Btu/lbm-oR) |
|||||||||||
1S | Sub Liq | 50.18 | 153.13 | N/A | 98.132 | 0.21024 | |||||||||||
1 | Sub Liq | 50.27 | 153.13 | N/A | 98.233 | 0.21044 | |||||||||||
2 | Sat Vap | 80 | 153.13 | 1 | 630.36 | 1.1982 | |||||||||||
3S | Sat Mix | 50 | 89.205 | 0.9551 | 601.38 | 1.1982 | |||||||||||
3 | Sat Mix | 50 | 89.205 | 0.9633 | 605.73 | 1.2068 | |||||||||||
4 | Sat Liq | 50 | 89.205 | 0 | 97.828 | 0.21024 | |||||||||||
Additional data that may be useful. | |||||||||||||||||
State | T (oF) |
P (psia) |
X (lbm vap/lbm) |
H (Btu/lbm) |
S (Btu/lbm-oR) |
||||||||||||
Sat Vap | 80 | 153.13 | 1 | 630.36 | 1.1982 | ||||||||||||
Sat Liquid | 80 | 153.13 | 0 | 131.86 | 0.27452 | ||||||||||||
Sat Vap | 50 | 89.205 | 1 | 625.07 | 1.2447 | ||||||||||||
Sat Liquid | 50 | 89.205 | 0 | 97.828 | 0.21024 | ||||||||||||
Part a.) | The thermal efficiency of a power cycle can be determined using : |
![]() |
Eqn 1 | ||||||||||||||
We need to evaluate Q12 and Q34 so we can use Eqn 1 to evaluate the thermal efficiency of the cycle. | |||||||||||||||||
Apply the 1st Law to the boiler, assuming it operates at steady-state, changes in kinetic and potential energies are negligible and no shaft work crosses the boundary of the boiler. | |||||||||||||||||
![]() |
Eqn 2 | ||||||||||||||||
We can get a value for H1 from the Steam Tables or NIST Webbook because we know that the boiler effluent in a Rankine Cycle is a saturated vapor at 80oF. | |||||||||||||||||
P2 | 153.13 | psia | H2 | 630.36 | Btu/lbm | ||||||||||||
In order to fix state 1 and evaluate H1, we must use the isentropic efficiency of the pump. The feed to the pump is a saturated liquid at 80oF. So, we can look-up S4 in the Steam Tables or NIST Webbook. | |||||||||||||||||
P4 | 89.205 | psia | S4 | 0.21024 | Btu/lbm-oR | ||||||||||||
H4 | 97.828 | Btu/lbm | |||||||||||||||
The definition of isentropic efficiency for a pump is : |
![]() |
Eqn 3 | |||||||||||||||
We can solve Eqn 2 for H1 : | ![]() |
Eqn 4 | |||||||||||||||
Next, we need to determine H1S. For an isentropic pump : | S1S | 0.21024 | Btu/lbm-oR | ||||||||||||||
Now, we know the value of two intensive properties at state 1S: S1S and P1 (because the boiler is isobaric in a Rankine Cycle, P1 = P2. | |||||||||||||||||
At P = 153.13 psia : | T (oF) | H Btu/lbm | S Btu/lbm-oR | ||||||||||||||
50 | 97.935 | 0.20985 | |||||||||||||||
T1S | H1S | 0.21024 | T1S | 50.18 | oF | ||||||||||||
55 | 103.528 | 0.22077 | H1S | 98.13 | Btu/lbm | ||||||||||||
Now ,we can plug values into Eqn 4 to determine H1 : | H1 | 98.23 | Btu/lbm | ||||||||||||||
Next, we can plug values into Eqn 2 to evaluate Q12 : | Q12 | 532.12 | Btu/lbm | ||||||||||||||
We can determine Q34 by applying the 1st Law, with all the same assumptions made about the boiler. | |||||||||||||||||
![]() |
Eqn 5 | ||||||||||||||||
We already know H4, so we need to evaluate H3. To do this, we use the isentropic efficiency of the turbine. | |||||||||||||||||
In order to fix state 3 and evaluate H3, we must use the isentropic efficiency of the turbine. The feed to the turbine is a saturated vapor at 80oF. So, we can look-up S2 in the Steam Tables or NIST Webbook. | |||||||||||||||||
P4 | 89.205 | psia | S2 | 1.1982 | Btu/lbm-oR | ||||||||||||
H2 | 630.36 | Btu/lbm | |||||||||||||||
The definition of isentropic efficiency for a turnine is : |
![]() |
Eqn 6 | |||||||||||||||
We can solve Eqn 6 for H3 : | ![]() |
Eqn 7 | |||||||||||||||
Next, we need to determine H3S. For an isentropic turbine : | S3S | 1.1982 | Btu/lbm-oR | ||||||||||||||
Now, we know the value of two intensive properties at state 3S: S3S and P3 (because the condenser is isobaric in a Rankine Cycle, P3 = P4. | |||||||||||||||||
At P = 89.205 psia : | Ssat liq | 0.21024 | Btu/lbm-oR | Since Ssat liq < S3S < Ssat vap, state 3S is a saturated mixture. |
|||||||||||||
Ssat vap | 1.2447 | Btu/lbm-oR | |||||||||||||||
Determine x3S from the specific entropy, using: |
![]() |
Eqn 8 | |||||||||||||||
x3S | 0.9551 | lbm vap/lbm | |||||||||||||||
Then, we can use the quality to determine H3S, using: |
![]() |
Eqn 9 | |||||||||||||||
At P = 89.205 psia : | Hsat liq | 97.828 | Btu/lbm | ||||||||||||||
Hsat vap | 625.07 | Btu/lbm | |||||||||||||||
H3S | 601.38 | Btu/lbm | |||||||||||||||
Now ,we can plug values into Eqn 7 to determine H1 : | H3 | 605.73 | Btu/lbm | ||||||||||||||
Next, we can plug values into Eqn 5 to evaluate Q34 : | Q34 | -507.90 | Btu/lbm | ||||||||||||||
We can now plug values into Eqn 1 to evaluate the thermal efficiency of the Rankine Cycle. | |||||||||||||||||
hth | 4.55% | ||||||||||||||||
The maximum thermal efficiency for a power cycle operating between two thermal reservoirs at TH and TC is the Carnot Efficiency : | |||||||||||||||||
![]() |
Eqn 10 | ||||||||||||||||
TC | 507.67 | oR | |||||||||||||||
TH | 541.67 | oR | hmax | 6.28% | |||||||||||||
Verify: | The assumptions made in the solution of this problem cannot be verified with the given information. | ||||||||||||||||
Answers : | a.) | hth | 4.55% | hmax | 6.28% |