8A-5 : | Entropy Production for the Adiabatic Compression of Air | 6 pts |
---|
Air is compressed in an adiabatic piston-and-cylinder device, as shown below, from 200 kPa and 360 K to 800 kPa. | ||||||||||||||||||||
|
||||||||||||||||||||
a.) Calculate the final temperature, T2, and the boundary work if
the process is internally reversible. |
||||||||||||||||||||
b.) Calculate T2 and the entropy generation if a real piston-and-cylinder device requires 15% more work than the internally reversible device. | ||||||||||||||||||||
Read : | Assume ideal gas behavoir for air. Apply an energy balance and an entropy balance. | |||||||||||||||||||
Notice that in part (a) the problem asks for the "work required", therefore our answer will be positive. | ||||||||||||||||||||
To get S and U data, use the 2nd Gibbs Equation in terms of the Ideal Gas Entropy Function. | ||||||||||||||||||||
Given: | T1 | 360 | K | m | 2.9 | kg | ||||||||||||||
P1 | 200 | kPa | Q | 0 | KJ | |||||||||||||||
P2 | 800 | kPa | Part (b) | Wpart (b) = | 15% | > Wpart (a) | ||||||||||||||
Find: | Part (a) | T2S | ??? | K | Part (b) | T2 | ??? | K | ||||||||||||
-Wb | ??? | kJ | Sgen | ??? | kJ/K | |||||||||||||||
Wlost | ??? | kJ | ||||||||||||||||||
Diagram: | ![]() |
|||||||||||||||||||
Assumptions: | 1 - | As shown in the diagram, the system is the air inside the cylinder. | ||||||||||||||||||
2 - | Air is modeled as an ideal gas. | |||||||||||||||||||
3 - | No heat transfer occurs. | |||||||||||||||||||
4 - | Boundary work is the only form of work that crosses the system boundary. | |||||||||||||||||||
5 - | Changes in kinetic and potential energies are negligible. | |||||||||||||||||||
6 - | For Part (a), there is no entropy generated. | |||||||||||||||||||
Equations / Data / Solve: | ||||||||||||||||||||
Part a.) | To determine the work required we need to apply the 1st Law for closed systems: |
![]() |
Eqn 1 | |||||||||||||||||
Because the process is adiabatic and we assume that changes in kinetic and potential energies are negligible and we assume boundary work is the only form of work, Eqn 1 becomes: | ||||||||||||||||||||
![]() |
Eqn 2 | or: | ![]() |
Eqn 3 | ||||||||||||||||
So, in order to answer part (a), we need to determine U for both the initial and final states. | ||||||||||||||||||||
Use the Ideal Gas Property Table for air to evaluate U1 and U2, but first we must know T1 and T2. | ||||||||||||||||||||
Because this process is both adiabatic and internally reversible, the process is isentropic. | ||||||||||||||||||||
In this problem, we have air and we assume it behaves as an ideal gas. | ||||||||||||||||||||
We can solve this problem using the ideal gas entropy function. | ||||||||||||||||||||
The 2nd Gibbs Equation in terms of the So is: | ![]() |
Eqn 4 | ||||||||||||||||||
Since part (a) is an isentropic process, Eqn 4 becomes: |
![]() |
Eqn 5 | ||||||||||||||||||
The final temperature, T2, can be determined from determining So(T2) and then interpolating on the Ideal Gas Properties Table for air. | ||||||||||||||||||||
Solving Eqn 5 for So(T2) yields: | ![]() |
Eqn 6 | ||||||||||||||||||
Properties for state 1 are determined from Ideal Gas Properties Table for air. | ||||||||||||||||||||
So(T1) | 0.189360 | kJ/kg-K | ||||||||||||||||||
U(T1) | 44.3940 | kJ/kg | ||||||||||||||||||
Now, we can plug values into Eqn 3: | R | 8.314 | kJ/kmol K | |||||||||||||||||
MW | 28.97 | kg/kmol | ||||||||||||||||||
So(T2) | 0.58721 | kJ/kg-K | ||||||||||||||||||
Now, we can go back to the Ideal Gas Properties Table for air and determine T2 and U2 by interpolation. | ||||||||||||||||||||
T (K) | Uo kJ/kg | So kJ/kg-K | ||||||||||||||||||
520 | 163.42 | 0.56803 | ||||||||||||||||||
T2 | U2 | 0.58721 | T2 | 529.59 | K | |||||||||||||||
530 | 171.04 | 0.58802 | U2 | 170.73 | kJ/kg | |||||||||||||||
Put values into Eqn 3 to finish this part of the problem: | -Wb | 366.38 | kJ | |||||||||||||||||
Part b.) | The actual work is 15% greater than the work determined in Part (a): | ![]() |
Eqn 7 | |||||||||||||||||
-Wb | 421.33 | kJ | ||||||||||||||||||
In this part of the problem, we know the actual work, but we don't know T2 or U2. | ||||||||||||||||||||
We can solve Eqn 3 for U2 interms of the known variables m, Wb and U1 : |
![]() |
Eqn 8 | ||||||||||||||||||
Plugging values into Eqn 7 yields : | U2 | 189.68 | kJ/kg | |||||||||||||||||
Next, we can determine T2 and So(T2) by interpolating on the Ideal Gas Properties Table for air. | ||||||||||||||||||||
Uo kJ/kg | T (K) | So kJ/kg-K | ||||||||||||||||||
186.36 | 550 | 0.62702 | ||||||||||||||||||
189.68 | T2 | So(T2) | T2 | 554.3 | K | |||||||||||||||
194.05 | 560 | 0.64605 | So(T2) | 0.63524 | kJ/kg-K | |||||||||||||||
The 2nd Law in terms of the entropy generated is: |
![]() |
Eqn 9 | ||||||||||||||||||
Since there is no heat transfer in this problem: | ![]() |
Eqn 10 | ||||||||||||||||||
The entropy change can be determined from Eqn 4: | ![]() |
Eqn 11 | ||||||||||||||||||
Now, we can plug values into Eqns 9 & 10 to determine the entropy generated: | ||||||||||||||||||||
Sgen | 0.04803 | kJ/K | ||||||||||||||||||
Verify: | The ideal gas assumption needs to be verified. | ![]() |
Eqn 12 | |||||||||||||||||
We need to determine the specific volume at each state and check if : | ![]() |
Eqn 13 | ||||||||||||||||||
V1 | 14.97 | L/mol | ||||||||||||||||||
V2A | 5.50 | L/mol | V2B | 5.76 | L/mol | |||||||||||||||
The specific volume at each state is greater than 5 L/mol for all states and the working fluid can be treated as a diatomic gas, so the ideal gas assumption is valid. | ||||||||||||||||||||
Answers : | Part a.) | T2S | 530 | K | Part b.) | T2 | 554 | K | ||||||||||||
-Wb | 366 | kJ | Sgen | 0.0480 | kJ/K | |||||||||||||||