7D-5 : | Compressed-Air-Driven Turbine | 8 pts |
---|
A small cylinder of compressed air stores energy, just like a battery. When you want to recover the energy from the compressed air, release the air through a turbine and vent the air to the surroundings. | |||||||||||||||||||
Use the shaft work to generate electricity. Consider a cylinder that contains air at 400 psia and 1000oF. When the air in the cylinder flows out through the turbine, it produces 250 Btu of shaft work by the time the pressure |
|||||||||||||||||||
in the cylinder reaches 75 psia. The turbine exhausts to ambient pressure, 14.7 psia. Determine the volume of the cylinder in ft3. | |||||||||||||||||||
Assume the air behaves as an ideal gas, the turbine and the cylinder are internally reversible, the entire process is adiabatic and changes in kinetic and potential energies are negligible. | |||||||||||||||||||
Read : | The key to this process is that it is entirely isentropic. This will let us determine the initial and final properties of the air in the tank, as well as the properties of the turbine exhaust. The best part is that the properties of the turbine exhaust do not change during the process. | ||||||||||||||||||
Given: | P1 | 400 | psia | P2 | 75 | psia | |||||||||||||
T1 | 1000 | oF | Pout | 14.7 | psia | ||||||||||||||
Ws | 250 | Btu | |||||||||||||||||
Find: | V | ? | ft3 | ||||||||||||||||
Diagram: | ![]() |
![]() |
|||||||||||||||||
Assumptions: | 1 - | The system is shown in the diagram. | |||||||||||||||||
2 - | For the system, heat exchange with the surroundings is negligible. | ||||||||||||||||||
3 - | Changes in kinetic and potential energies are negligible. | ||||||||||||||||||
4 - | The process is reversible. | ||||||||||||||||||
5 - | The air behaves as an ideal gas. This is a very questionable assumption at these pressures, but the problem statement instructed us to make it ! | ||||||||||||||||||
Equations / Data / Solve: | |||||||||||||||||||
We want to evaluate the volume of the tank in the absence of irreversibilities. | |||||||||||||||||||
We can begin by applying the 1st Law to this system. | |||||||||||||||||||
![]() |
Eqn 1 | ||||||||||||||||||
We can simplify Eqn 1 because the process is adiabatic and we have assumed that changes in kinetic and potential energies are negligible and because there is no mass flow into the system. | |||||||||||||||||||
![]() |
Eqn 2 | ||||||||||||||||||
The mass conservation equation for this process is : | ![]() |
Eqn 3 | |||||||||||||||||
Combining Eqns 1 & 2 yields : | ![]() |
Eqn 4 | |||||||||||||||||
Because the entire process is reversible and adiabatic, the process is isentropic. Therefore, Sout can be determined and does not change during the process. Because two intensive properties, Sout and Pout, are constant, we can conclude that the state of the turbine exhaust is constant and, therefore, Tout and Hout are constant as well. Therefore, Eqn 4 becomes : | |||||||||||||||||||
![]() |
Eqn 5 | ||||||||||||||||||
The initial and final moles of air in the tank can be determined from the ideal gas EOS: | |||||||||||||||||||
![]() |
Eqn 6 | ![]() |
Eqn 7 | ||||||||||||||||
Apply Eqn 7 to both the initial and final states of the tank contents and combine these with Eqn 5 to get: | |||||||||||||||||||
![]() |
Eqn 8 | ||||||||||||||||||
Now, we can solve Eqn 8 for the unknown volume of the tank : | ![]() |
Eqn 9 | |||||||||||||||||
An alternate way to express Eqn 9: | ![]() |
Eqn 9a | |||||||||||||||||
The air remaining in the tank undergoes an isentropic expansion from P1, T1 to P2, T2. | |||||||||||||||||||
At this point, we can solve this problem by either of two methods. We can apply the 2nd Gibbs Equation for ideal gases and the Ideal Gas Entropy Function or we can use the Ideal Gas Relative Pressure, Pr. | |||||||||||||||||||
Method 1: Use the Ideal Gas Entropy Function. | |||||||||||||||||||
The 2nd Gibbs Equation for ideal gases in terms of the Ideal Gas Entropy Function is : | |||||||||||||||||||
![]() |
Eqn 10 | ||||||||||||||||||
We can apply Eqn 10 to the process that the air inside the tank undergoes AND to the process that the air undergoes as it passes through the turbine: | |||||||||||||||||||
![]() |
Eqn 11 | ||||||||||||||||||
We can solve Eqns 10 & 11 for the unknowns SoT2 and SoTout : | |||||||||||||||||||
![]() |
Eqn 12 | ||||||||||||||||||
![]() |
Eqn 13 | ||||||||||||||||||
We can look up SoT1 in the Ideal Gas Property Tables and use it with the known pressures in Eqn 13 to determine SoT2 and SoTout : | |||||||||||||||||||
T1 | 1459.67 | oR | R | 1.987 | Btu/lbmol-oR | ||||||||||||||
MW | 28.97 | lbm/lbmol | |||||||||||||||||
T (oR) | So (Btu/lbm-oR) | ||||||||||||||||||
1450 | 0.24808 | ||||||||||||||||||
1459.67 | SoT1 | Interpolation yields : | SoT1 | 0.24981 | Btu/lbm-oR | ||||||||||||||
1500 | 0.25705 | SoT2 | 0.13500 | Btu/lbm-oR | |||||||||||||||
SoTout | 0.02323 | Btu/lbm-oR | |||||||||||||||||
Now, we can use SoT2 and SoTout and the Ideal Gas Property Tables to determine both T2 and Tout and then U1, U2 and Uout by interpolation : | |||||||||||||||||||
T (oR) | Uo (Btu/lbm) | ||||||||||||||||||
1450 | 167.28 | ||||||||||||||||||
1459.67 | Uo1 | Interpolation yields : | Uo1 | 169.17 | Btu/lbm | ||||||||||||||
1500 | 177.07 | ||||||||||||||||||
T (oR) | Uo (Btu/lbm) | So (Btu/lbm-oR) | |||||||||||||||||
930 | 69.166 | 0.13406 | |||||||||||||||||
T2 | Uo2 | 0.13500 | Interpolation yields : | T2 | 933.51 | oR | |||||||||||||
940 | 70.985 | 0.13674 | Uo2 | 69.804 | Btu/lbm | ||||||||||||||
And at the turbine outlet : | |||||||||||||||||||
T (oR) | Ho (Btu/lbm) | So (Btu/lbm-oR) | |||||||||||||||||
590 | 49.533 | 0.022643 | |||||||||||||||||
Tout | Hoout | 0.02323 | Tout | 591.44 | oR | ||||||||||||||
600 | 51.934 | 0.026678 | Hoout | 49.880 | Btu/lbm | ||||||||||||||
We can plug all of the given and determined values back into Eqns 3, 7, 8 & 9 to evaluate n1, n2, Dn, and finally,V : | |||||||||||||||||||
R | 10.7316 | psia-ft3 / lbmol-oR | V | 2.979 | ft3 | ||||||||||||||
n1 = | 0.07606 | lbmol | m1 = | 2.204 | lbm | ||||||||||||||
n2 = | 0.02230 | lbmol | m2 = | 0.646 | lbm | ||||||||||||||
Dn = | -0.05376 | lbmol | Dm = | -1.558 | lbm | ||||||||||||||
Method 2: Use the Ideal Gas Relative Pressure. | |||||||||||||||||||
When an ideal gas undergoes an isentropic process : | ![]() |
Eqn 14 | |||||||||||||||||
Where Pr is the Ideal Gas Relative Pressure, which is a function of T only and we can look up in the Ideal Gas Property Table for air. | |||||||||||||||||||
We can solve Eqn 14 For Pr(T2), as follows : | ![]() |
Eqn 15 | |||||||||||||||||
Look-up Pr(T1) and use it in Eqn 15 To determine Pr(T2) : | |||||||||||||||||||
T (oR) | Pr | ||||||||||||||||||
1450 | 37.310 | ||||||||||||||||||
1459.67 | Pr(T1) | Pr(T1) | 38.318 | ||||||||||||||||
1500 | 42.521 | Pr(T2) | 7.185 | ||||||||||||||||
Once we know Pr(T2) we can determine T2 by interpolation on the the Ideal Gas Property Table. | |||||||||||||||||||
We can then use T1 and T2 to determin U1 and U2 from the Ideal Gas Property Tables. | |||||||||||||||||||
T (oR) | Uo (Btu/lbm) | T (oR) | Pr | Uo (Btu/lbm) | |||||||||||||||
1450 | 167.28 | 930 | 7.0696 | 69.166 | |||||||||||||||
1459.67 | Uo1 | T2 | 7.185 | Uo2 | |||||||||||||||
1500 | 177.07 | 940 | 7.3513 | 70.985 | |||||||||||||||
Interpolation yields : | Interpolation yields : | ||||||||||||||||||
Uo1 | 169.17 | Btu/lbm | T2 | 934.08 | oR | ||||||||||||||
Uo2 | 69.909 | Btu/lbm | |||||||||||||||||
Because the turbine is also an isentropic process, we can determine the relative pressure of the turbine effluent: | |||||||||||||||||||
![]() |
Eqn 16 | Rearranging: | ![]() |
Eqn 17 | |||||||||||||||
Pr(Tout) | 1.4082 | ||||||||||||||||||
Now, we can use Pr(Tout) to determine T2 and then Hout using the Ideal Gas Property Tables : | |||||||||||||||||||
T (oR) | Pr | Ho (Btu/lbm) | |||||||||||||||||
590 | 1.3914 | 49.533 | |||||||||||||||||
Tout | 1.4082 | Hoout | Interpolation yields : | Tout | 591.99 | oR | |||||||||||||
600 | 1.4758 | 51.934 | Hoout | 50.010 | Btu/lbm | ||||||||||||||
We can plug all of the given and determined values back into Eqns 3, 7, 8 & 9 to evaluate n1, n2, Dn, and finally,V : | |||||||||||||||||||
R | 10.7316 | psia-ft3 / lbmol-oR | V | 2.982 | ft3 | ||||||||||||||
n1 = | 0.07614 | lbmol | m1 = | 2.206 | lbm | ||||||||||||||
n2 = | 0.02231 | lbmol | m2 = | 0.646 | lbm | ||||||||||||||
Dn = | -0.05383 | lbmol | Dm = | -1.560 | lbm | ||||||||||||||
Verify: | The ideal gas assumption needs to be verified. | ||||||||||||||||||
We need to determine
the specific volume at each state and check if: |
![]() |
||||||||||||||||||
Air can be considered a diatomic gas. | |||||||||||||||||||
Solving the Ideal Gas EOS for molar volume yields : | ![]() |
||||||||||||||||||
Use : | R | 10.7316 | psia-ft3 / lbmol-oR | ||||||||||||||||
V1 | 39.16 | ft3/lbmol | |||||||||||||||||
V2 | 133.57 | ft3/lbmol | V3 | 431.78 | ft3/lbmol | ||||||||||||||
The specific volume at state 2 and at the turbine effluent is greater than 80 ft3/lbmol. Air can be considered to be a diatomic gas, so the ideal gas assumption is valid here. The ideal gas assumption is not valid in state 1 and this makes the solution somewhat questionable, but we were instructed to make the ideal gas assumption in the problem statement. | |||||||||||||||||||
Answers : | Method 1 | Method 2 | |||||||||||||||||
The volume of the tank is: | V | 2.979 | 2.982 | ft3 | |||||||||||||||
The difference between the two methods is caused by the following issues (ranked from most important to least important). | |||||||||||||||||||
1 - | Errors associated with linearly interpolating between values of a functions that are not really linear. | ||||||||||||||||||
3 - | Round-off error in the Ideal Gas Property Tables. |