7D-3 : | Work, Efficiency and the T-S Diagram for an Ideal Gas Power Cycle | 8 pts |
---|
Air
contained in a piston-and-cylinder device undergoes a power cycle made up of three internally reversible processes. Step 1-2: Adiabatic compression from 20 psia and 570oR to 125 psia |
|||||||||||||||||||||||||
Step 2-3: Isothermal expansion to 20 psia Step 3-1: Isobaric compression a.) Sketch the process path for this power cycle on both PV and TS diagrams b.) Calculate T3 in oF |
|||||||||||||||||||||||||
c.) Calculate the boundary work in Btu/lbm d.) Calculate the thermal efficiency of the power cycle |
|||||||||||||||||||||||||
Read : | For part (a) sketch the cycle first to get a better understanding of the processes. | ||||||||||||||||||||||||
For part (b) recall that the Process 2-3 is isothermal and therefore T3 = T2. Determine So(T2) and look it up in the Ideal Gas Entropy Table for air to determine T2. | |||||||||||||||||||||||||
For part (c) determine the net work by determining the work for each process and then adding them together. | |||||||||||||||||||||||||
For part (d) determine the thermal efficiency as the ratio of the net work to the heat going into the system. | |||||||||||||||||||||||||
Given: | T1 | 570 | oR | P2 | 125 | psia | |||||||||||||||||||
P1 | 20 | psia | P3 | 20 | psia | ||||||||||||||||||||
Find: | Part (a) | Sketch PV and TS diagrams | Part (c) | Wcycle | ? | Btu/lbm | |||||||||||||||||||
Part (b) | T3 | ? | oR | Part (d) | h | ? | |||||||||||||||||||
Diagram: | ![]() |
||||||||||||||||||||||||
![]() |
![]() |
||||||||||||||||||||||||
Assumptions: | 1 - | The system is the air inside the cylinder. | |||||||||||||||||||||||
2 - | The air is modeled as an ideal gas. | ||||||||||||||||||||||||
3 - | Each process is internally reversible. | ||||||||||||||||||||||||
4 - | Boundary work is the only form of work that crosses the system boundary. | ||||||||||||||||||||||||
5 - | There is no change in kinetic or potential energy for either of the two processes. | ||||||||||||||||||||||||
Equations / Data / Solve: | |||||||||||||||||||||||||
Part b.) | Since Process 2-3 is isothermal: |
|
Eqn 1 | ||||||||||||||||||||||
So we should work on determining T2. | |||||||||||||||||||||||||
Let's apply the 2nd Gibbs
Equation for ideal gases to Process 1-2 : |
![]() |
Eqn 2 | |||||||||||||||||||||||
We can determine T2 and thus T3 from: |
|
Eqn 3 | |||||||||||||||||||||||
Lookup So(T1) in the Ideal Gas Entropy Tables: | So(T1) | 0.014381 | Btu/lbm-oR | ||||||||||||||||||||||
Now, plug values into Eqn 3 to determine So(T2): | |||||||||||||||||||||||||
R | 1.987 | Btu/lbmol-oR | So(T2) | 0.14007 | Btu/lbm-oR | ||||||||||||||||||||
MW | 28.97 | lbm/lbmol | |||||||||||||||||||||||
Now that we know the value of So at T2, we can interpolate on the air Ideal Gas Property Table to determine T2. | |||||||||||||||||||||||||
T (oR) | So (Btu/lbm-oR) | ||||||||||||||||||||||||
950 | 0.13939 | ||||||||||||||||||||||||
T2 | 0.14007 | Interpolation yields : | T2 = T3 = | 952.60 | oR | ||||||||||||||||||||
960 | 0.14202 | 492.93 | oF | ||||||||||||||||||||||
Part c.) | The net work is the sum of the work done during each process: |
![]() |
Eqn 4 | ||||||||||||||||||||||
We need to determine the work involved in each process. Begin with Process 1-2. | |||||||||||||||||||||||||
Since Process 1-2 is adiabatic, and changes in internal and kinetic energies are negligible, the appropriate form of the 1st Law is : | |||||||||||||||||||||||||
![]() |
Eqn 5 | ![]() |
Eqn 6 | ||||||||||||||||||||||
Because we know both T1 and T2, we can look up the U's in the Ideal Gas Property Table: | |||||||||||||||||||||||||
At T1 = 570 oR, no interpolation is required: | U1 | 5.6705 | Btu/lbm | ||||||||||||||||||||||
T (oR) | Uo (Btu/lbm) | ||||||||||||||||||||||||
950 | 72.806 | ||||||||||||||||||||||||
952.60 | U2 | Interpolation yields : | U2 | 73.281 | Btu/lbm | ||||||||||||||||||||
960 | 74.631 | ||||||||||||||||||||||||
Now, we can plug values back into Eqn 6 to determine W12 : | W12 | -67.610 | Btu / lbm | ||||||||||||||||||||||
Boundary work done by the system during Process 2-3 can be calculated from the definition of boundary work : | |||||||||||||||||||||||||
|
Eqn 7 | ||||||||||||||||||||||||
For an ideal gas substitute P = nRT/V into Eqn 7 : | ![]() |
Eqn 8 | |||||||||||||||||||||||
Integrate Eqn 2 (the process is isothermal, T2 = T3 ) : |
![]() |
Eqn 9 | |||||||||||||||||||||||
Since P2V2 = nRT2 and P3V3 = nRT3 and T2 = T3, we conclude that P2 V2 = P3 V3 , or : |
![]() |
Eqn 10 | |||||||||||||||||||||||
Combining Eqn 10 and Eqn 9 yields : | ![]() |
Eqn 11 | |||||||||||||||||||||||
We can plug numbers into Eqn 11 to evaluate W23 : | W23 | 119.74 | Btu / lbm | ||||||||||||||||||||||
Boundary work done by the system during Process 3-1 can be calculated from the definition of boundary work : | |||||||||||||||||||||||||
![]() |
Eqn 12 | ||||||||||||||||||||||||
Since Process 3-1 is isobaric (P=constant), Eqn 12 simplifies to : |
![]() |
Eqn 13 | |||||||||||||||||||||||
Since : | ![]() |
Eqn 14 | ![]() |
Eqn 15 | |||||||||||||||||||||
And since P1 = P3, Eqns 13, 14 & 15 can be combined to obtain : | ![]() |
Eqn 16 | |||||||||||||||||||||||
Now, we can plug values into Eqn 16 to evaluate W31 : | W31 | -26.24 | Btu / lbm | ||||||||||||||||||||||
Now, we can calculate Wcycle from the sum of the work terms for each step, using Eqn 4 : | |||||||||||||||||||||||||
Wcycle | 25.88 | Btu / lbm | |||||||||||||||||||||||
Part d.) | The thermal efficiency of the cycle is defined by : | ![]() |
Eqn 17 | ||||||||||||||||||||||
We know Wcycle, so we need to determine Qin. We also know that Q12 = 0 (adiabatic process) and from the TS Diagram it can be concluded that Q23 > 0 and Q31 < 0. Therefore, Qin = Q23. | |||||||||||||||||||||||||
![]() |
Eqn 18 | ||||||||||||||||||||||||
Now we need to determine the heat transferred into the cycle during Process 2-3. Start from the definition of entropy : | |||||||||||||||||||||||||
![]() |
Eqn 19 | ||||||||||||||||||||||||
Because Process 2-3 is internally reversible, we can integrate Eqn 19 to get: | ![]() |
Eqn 20 | |||||||||||||||||||||||
Now, because Process 2-3 is isothermal, the T pops out of the integral and Eqn 20 is easy to integrate: |
![]() |
Eqn 21 | |||||||||||||||||||||||
Now, we can again apply the 2nd Gibbs Equation for ideal gases to Process 2-3 to evaluate DS: | |||||||||||||||||||||||||
![]() |
Eqn 22 | ||||||||||||||||||||||||
Since the process is isothermal: So(T2) = So(T3) and Eqn 22 simplifies to: |
![]() |
Eqn 23 | |||||||||||||||||||||||
When we substitute Eqn 23 into Eqn 21 we get : | ![]() |
Eqn 24 | |||||||||||||||||||||||
DS23 | 0.12569 | Btu/lbm-oR | Q23 | 119.74 | Btu / lbm | ||||||||||||||||||||
Finally, we plug values back into Eqn 18 to evaluate the thermal efficiency of the cycle : | |||||||||||||||||||||||||
h | 21.62% | ||||||||||||||||||||||||
Verify: | The ideal gas assumption needs to be verified. | ||||||||||||||||||||||||
We need to determine
the specific volume at each state and check if: |
![]() |
||||||||||||||||||||||||
Air can be considered a diatomic gas. | |||||||||||||||||||||||||
Solving the Ideal Gas EOS for molar volume yields : | ![]() |
||||||||||||||||||||||||
Use : | R | 10.7316 | psia-ft3 / lbmol-oR | ||||||||||||||||||||||
V1 | 305.85 | ft3/lbmol | |||||||||||||||||||||||
V2 | 81.78 | ft3/lbmol | V3 | 511.15 | ft3/lbmol | ||||||||||||||||||||
The specific volume is greater than 80 ft3/lbmol for all states so the ideal gas assumption is valid. | |||||||||||||||||||||||||
Answers : | a.) | See diagrams above. | c.) | Wcycle | 25.9 | Btu/lbm | |||||||||||||||||||
b.) | T3 | 953 | oR | d.) | h | 21.6% |